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ON GOOD SUBSPACES OF lp 

BY 

LEONARDE.  DOR 

A B S T R A C T  

THEOREM. Given K > I  and l_-<p<% there is A > I  so that every Jp.~ 
subspace of lp is K-isomorphic to lp. 

O. Introduction and preliminaries 

Let us recall that a separable Banach space X is called a 27p space if there is a 

sequence X, _C X2 _C X3 _C. �9 �9 of finite dimensional subspaces with [,-J~=l X, = X 

and a constant tx < ~ so that 

d(X.,l~("))<=lx, n = 1 , 2 , . "  

where d(n) denotes the dimension of X,. More precisely we say that X is a ~?p., 

space if the infimum of such/x 's  is no larger than A. We refer to ~p,, spaces with 

small value of A as "good ~p spaces". 

In his dissertation [10] M. Zippin proved that a space X with /x = 1 is 

isometric to Lp(v) for a suitable measure v (see also [6]). J. Lindenstrauss and A. 

Pej'czyfiski [7] proved that the same conclusion holds for X a ~p., space. In view 

of precedents in functional analysis (see for example [2], [3], [4], [9], [11] and 

[12]), it is natural to ask whether this result extends by continuity to values of A 

close to 1, i.e. 

PROBLEM A. Is there a Ap > 1 and a function 4~p from (1, Ap) to (1,oo) with 

lim,..,+ ~p(A) = 1 so that every ~?p., space is thp (A )-isomorphic to some Lp(u) 
space? 

A partial answer to this problem was given by M. Zippin [11] in the case p = 1. 

He gave a function 4~,(A) for 1 < A < AI so that every ~p., space which embeds 

isometrically in 11 is th,(A)-isomorphic to l,. However he had l im,~l .  4~l(A ) = 2. 

In this paper we extend Zippin's result to all values of 1 =< p < oo and give 

lim~_,+ 4~p(A) = 1. 

Received January 7, 1982 

303 



304 L.E. DOR lsr. J. Math. 

Zippin's construction [11] plays a central role in our proof. It is presented here 

in a streamlined and modified form. 

We shall need two known results on sequences in Lp(v) spaces. 

PRoeosmoN 1 ([4], [1], see also [5]). Let 1 <-- p < % p ~ 2. There is A e > 1 and 
function ~,(A) from (l,Ap) to (0,1) with l i m , _ , . S p ( a ) = 0  so that [or any 

1 < a < ap, any (finite or infinite) sequence (x,, x2," " )  in any Lp(v)-space, if the 
inequalities 

( I l l  Jl 
hold for all choices of scalars (a~, a2," "" ) (with finitely many non-zeros), then 

there are disjoint u-measurable sets A, ,  A 2 , ' "  such that 

II x ,,. ,, fl < a, (x), for all i. 

PROOF. The proof of proposition 2.1 of [4], modified slightly to account for 

the fact that the x, are no longer assumed to be unit vectors, gives 

max l aixi I >>- A-(P+2)/!~ l a ' ip 

for all finitely non-zero choices of coefficients (a,). Then the proof of proposition 

2.2 of 14] provides us with functions ~b, in L~(u) with 6, => 0, E,~b, =< 1 a.e. so that 

f i x ,  [e4,Mv ~ A -p~p+z~/!p-2!, all i. 

Now if we take A~ = [4', >~], we will clearly have disjoint sets A~, and a simple 
computation will give 

~_ Ix, I ~ _-<2{a. -,~-.'.*~"~-~}~- a~(ay' 
ai 

for all i. 

PROPOSmON 2 (G. Schechtman [91). Given I <= p < m, p ~ 2 there is ep and 

function ap : (0, ep ) ~ (0, 1) so that ap ( e )--+ 0 as e --+ 0 + and for all 0 < e < ep, if 

(x,) C_ Lp(u ) and (A,)  is a sequence of disjoint u-measurable sets such that 

(i) ( 1 - e ) ( ~ , o ~ , l p ) " " < = l l ~ o ~ , x , l { < = ( l + e ) ( ~ / l ~ , [ p ) " P  

for all finitely non-zero (a,)'s, and 

(ii) II x,,.,, 11 < e for all i, 
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then 

(z t ~ ,-~, <= ap(e ) la, I p 

for all finitely non-zero sequences of scalars (a,). 

We shall need the following perturbation lemma which is a simple conse- 
quence of Proposition 2: 

LEMMA 3. Let 1 <= p < ~, p ~ 2, assume that e is small enough and let (x, ), 
(y~) be two sequences in Lp(u) such that 

II x, - y, 11 < ~ for each i, 

and such that for all finitely non-zero sequences of scalars (a,), 

( 1 - e )  ( ~ ,  a, ,P)'/P----I ~ a , x , l < = ( l + e ) ( ~ [ a ,  lP)'", 

( l - t )  ~ l a ,  I p) <_- ~ =<(l+e)  la, lP) . 

Then for all such sequences (a,), 

where n = ~ . ( e ) = 2 a p ( S p ( ( 1 - e ) - ' ) ) + 2 8 ~ ( ( 1 - e ) - ' ) + 3 e ,  so in particular 
~ , ( e ) ~ O  as e---~0+. 

PROOF. By Proposition 1 there are disjoint sets (A~) and disjoint sets (B~), all 
u-measurable, so that 

II x,,.. ~, II --- 8,  all i, 

II y,,-,, II --< 8, all i, 

where 8 = 8p ((1-  e)-~). From our assumption we get that for all i, 

II x , ,_ , , l l -  -< II y,,_,,[I + II x , -  y, I I -  -< 8 + ~, 

and similarly 

II II < 8 + ~. Y i l ia d 

Thus for all finitely non-zero sequences (a~) of scalars, 
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Pl o,x  ,ll ll ox. I+1  o ,11 + o ,l 

+11 

+ ( ~ .  Ilot,y,u_,,llP)l/P+ ( ~  IIot,(x,- y,)llP) '/p by disjointness 

by Proposition 2 

In the case p = 1 this is a special case of a trivial and well known perturbation 

lemma for equivalents of the usual l~ basis. For 1 < p < 0r p ~  2, it can be shown 

that the requirements that both sequences be well equivalent to the usual/p-basis 

and that the ambient space be an Lp-space cannot be dropped. 

We use standard Banach space-theoretic notation as can be found in [8], for 

example. For a function f and set A, fla is the function that equals f on A and 
equals 0 off A. For an infinite set M, P~(M) will denote the family of all the 

infinite subsets of M. 

1. Proof of the theorem stated in the abstract 

We fix l=<p < 0% p ~  2. To simplify notation we choose a version of the 

moduli mentioned in the introduction so that 

(1) 6(,~) = 6p(A)_-> h - 1, all 1 _-< X < ;t~, 

(2) a(e)=ap(e)>-e, al lO< e <ep, 

(3) rt(e) = r/p(e)_-> e, a l lO< e < ep. 

We choose e > 0 such that 

(4) {1 - 2rt(5rl(Ze ))}-' < K, 

as well as 

(5) ( 1 + e ~ ' < 3 / 2  and e < l / l O .  
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Next we choose ~ > 0 such that 

(6) 6 _-< a ( 8 ) <  e2/10 

and finally find /z > 1 such that 

(7) 8(/~)_-< (~ (so iz < 1 + ~). 

We shall show that any h < / x  will satisfy the s tatement  of the theorem. 

Fix a ~e.~ subspace X of l e. Since A </x,  there 

subspaces 

X, c X ~ c X ~ c .  �9 �9 (8) 

such that 

are finite-dimensional 

(9) QJ X, = X and d(X.,/~("))<-/z,  for all n. 
n = l  

For each X,  we can find a basis (xT, x~, . . . ,x3( .))  such that 

t I t (lo) ~,-' I ~, l" <= ~,x; <--. I ~, I" 
' , j = l  j = t  

for all choices of scalars (aj, j <= d(n)). 

For each n we choose by Proposition 1 disjoint subsets A 7, A ~',. �9 A 3(,) of N 

so that 

(11) [[x~_Arll< 6(/x)_-< 8 for all j <= d(n ). 

We may and shall assume that all the sets A ;  are finite. It might be helpful to 

keep in mind a picture of the double array (xT, n E N, j  <= d(n)) with the row 

(x?,x~, . .  ",xT,.)) as its n ' t h  level. 

With each vector x7 on the n ' th  level we associate a set of indices on the k ' t h  

level (k > n) as follows: 

C7 'k = {h  _-< d ( k ) ;  [Ix L~z~,,zl I > (1 - ~p)l/p}, 
(12) 

for l<-j<=d(n),  n < k .  

Also for all n < k and j -< d (n) we set 

(13) Z~,k k = XhlATnA~ for all h E C; 'k. 

We now claim that 

1% For any n < k, the sets C?'k,..., C3"~k.) are disjoint. (This shows that the 

definition in (13) is a proper  one.) 
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2 ~ For a n y n < k a n d j < = d ( n ) ,  

" ~ h ~ C T ' ~ l ) < e .  d(x,,[x~, 

3 ~ For any n < k and j <= d(n), the supports o[ the [unctions (z~ k, h E C7 "k) 
are disjoint and contained in A ~. 

4 ~ . For all n < k and h E U]_-(q )C~ ''k, 

(14) Ilx~- zz,~ll~ ~ and 

(15) /.t > II z Z'~ II => (1 - e '  )"0. 

PROOF OFTHE CLAIM. 1 ~ holds since any hEC7'kAC~'kfor  l<- iCj<=d(n)  
would have to satisfy by (10) and (12) the inequality 

~," e IIx~,ll" ---- II x~,~rll" + It x~,,a,ll' =>2(1- e ' )  

which is absurd by (5), (6) and (7). 

3 ~ and 4 ~ are obvious from the definitions (12) and (13). 

To prove 2 ~ choose n < k and ] <= d(n). Since X, CXk, we can find scalars 

/3,/32," �9 ",/3~c~) so that 

(16) x~ = ~2~hx~. 
h = l  

We introduce the auxiliary functions 

y~ = x ~A~, 

For any h ~ C? "k we have by (12) 

This gives 

l<-_h<=d(k). 

k p 

= II x~,~..,o.~ ll" + II xLJ 
v 

k p ~ p  --< [l y~,-A7[I + by (11). 

-"'{ E ,  it3  < k 

= ~/3hy~,_.; ,[  by disjointness 

II n k 
= II x,,_.;ll + t~ (x ~ - y 4-.; by (16) 
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( d~) \ I/p 
<=8 +,h=, 113h [P) a(8)  by (11) and Proposition 2 

<-8+~a(8)llxTIl<-8+~a(8) by (10). 

This, together with (10) and (16), gives 

h•c']" 

<=tz 113, I p < t z2a(8 )+8  
h = - 8P) '~p .k (• p 

< 5a (8) = 10a (6)/e < e by (2), (6) and (7), 
- el2 

which concludes the proof of the claim. 

Our next step is to pass to a subsequence n ( l ) <  n ( 2 ) < . . ,  of the set of levels, 

on which the sets C~ 'k and the functions z 7, 'k will behave in a mutually compatible 

way, namely, if we set 

(17) D, = { 1 , 2 , . - . ,  d(n(1))} 

and, for each r > 1, set 

D; = U {CT~""c'~,s < r, j E D,}, and 
(18) 

L D, = {1 ,2 , . . . ,  d(n(r))} \ D;, 

then the following properties will hold: 

5 ~ . Foranyr>=l a n d a n y j E D r ,  thesetsCT~r~'"~',s = r + l , r + 2 , . . .  haveall  

the same number o[ elements. 

6 ~ . For any r >= 1, any j E D,, and any s, s ' >  r, to any h ~ CT ~~ there 

corresponds h' E C~ ~r~"~̀ '~ such that 

IIz  ' ' ' ~  < 

To get this, we define by induction a sequence n ( l ) <  n ( 2 ) < - - ,  of positive 

integers, a sequence K~ D K2 23 �9 �9 �9 in P~(N), and the sets D,, D2,. �9 �9 as specified 

by (17) and (18) so that 

(i) n(r) = (min K~) ~ K,+,, all r E N, 

(ii) [or each r E N and each j E D,, the sets C7 ~'~'k, k E K,+~ have all the same 

number of elements, 

and 
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(iii) for all r E N ,  j @ D ,  and k, k 'EK,~I ,  for each h E C ,  c~ there is 

h' ~ C~ ~')'k' so that 

The  condi t ions (i)-(iii) clearly imply that  5 ~ and 6 ~ are satisfied. 

We  start  the inductive const ruct ion with K I = N ,  n ( 1 ) = 1 ,  and D . =  

{ 1 , 2 , . . . ,  d(n(1))}. For  the inductive step we take s > 1 and assume that  

n ( 1 ) < n ( 2 ) < . . . < n ( s )  and K, D K z D . . . D K ,  

have been  defined so that  the condit ions (i)-(iii) hold for all 1 _-< r = s - 1 (under  

the convent ions  (17) and (18)), and moreove r ,  n( s )=minK, .  Let  K's = 

K, \{n(s)}. 
Fix for  a while j @/9,. For  each k > n(s) the functions (z2 "~'k, h E C7 I'~k) are 

non-zero ,  with disjoint  suppor t s  all conta ined  in the fixed finite set A ~'~ (see 3 ~ 

4~ Consequent ly ,  we have 

[CT'S"kI<=IA';"'] f o r a l l k > n ( s ) .  

Since we have such a bound,  i ndependen t  of k, for each j E D,, we can find 

K7 E P~(K',) and integers cj _-<AT c'), j ~ D ,  so that  

I CT")'kl = c,, all k E K", j E D~. 

N o w  for  each j E D, and k E K",  the q - t up l e  (zTY)k, h E C~ "')'k) belongs to 

the compac t  set {/z Ball (/,(A~"')))}~J. (For definiteness we consider  the indices 

h E C7 r in their  natural  order . )  The re fo re  we can find K,+t E P=(K~) so that  for  

each j E D,, for all k, k '  ~ K,+I, and each h E C7 ~')'k we have 

where  h '  is the index cor responding  to h under  the natural  order ings  of C7 ~'k 

and of C7 ~'~'k'. 

Finally we set  n(s + 1) = min K,+~ and now the induction hypothesis  holds with 

s rep laced  by s + 1, so the inductive const ruct ion is comple te .  

As  a consequence  of 6 ~ we obta in  the following proper ty :  

7 ~ . For a n y q < r < s a n d f o r a n y i ~ D q a n d i E l g ,  wehave 

C "c~)'"~'~ n C7 r = 0 .  

T o  see this, assume that  h E C~"q)'"~s)n C': c')'"<'). Then  by 6 ~ there  is h ' E  

C? c~)'"~') so that  

(19) II zTY )'"' ' '  - z ~Y"""'II -< e. 
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Now we have two indices h '  and j on the n ( r ) ' t h  level. Since h'@D' ,  and 

j ~ D,, we have  h ' P . ~  and so 

(20) z 7,!q~"~'~1,~7,., = 0. 

Consequent ly ,  

IIX~U;'laT(')J[~llX~(s)--z~!q)'n(r)[I by (20) 

= II x z " ' -  z z '"'""'  II + II z z ,~,.o,', - z z~ ~'.o''' II 

< e + e = 2e by (14) and (19). 

But  h E C7 ~'~'"~, so by definit ion (12), 

2e >=IIx~"',A7,,,It>=(1-eP) '/p, 

which contradic ts  (5) and thus p roves  the validity of 7 ~ 

In view of 5 ~ 6 ~ and 7 ~ we may  (and shall) assume,  wi thout  loss of general i ty ,  

For all r E N ,  j U D ,  a n d  s, s ' > r, 

CU~.~ C U ~ . . . ' ~  CU~, 

6 ~176 For all r all s, s '>  r and all h ~ UjcD, C7 ~'~, we have 

This can be done  by pe rmu t ing  the e lements  in each consecut ive  row, and 

adjust ing all the definit ions (of C7 "k, etc.) according to the new order ing.  

Finally, using again the p recompac tnes s  of the set (z~ ~'~'"~'~, s > r) for  each r, 

and each  h E Uj~o ,C~ 'c'~, toge the r  with a diagonal  process,  we can find a 

subsequence  sl < s2 < �9 �9 �9 so that  for  any r and any h ~ U i . o  ' C7 ~'~, the limit 

(21) u~, = lim z 7, ~'~'"~',~ 

exists in norm.  This definit ion and 6 ~176 give us 

(22) II z~ 'r''""' - u~ll <= e 

for all r, all s > r and h E U C7 c') 
jED, 

We in t roduce  the index set 

A = { ( r , h ) ; r E N ,  h E  U C~'~}, 
j6D,  

that  
oo. 
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and consider the family {u'h,(r ,h)EA}.  For any given s > l ,  the functions 

(z 7, (')'"('), (r, h ) E  A, r < s) are disjointly supported (on the sets A 7,")), so passing 

to limit on s, ~ ~ we obtain that the family (u 7,, (r, h) E A) is disjointly supported 

(in view of the fact that disjointness on support is an isometric invariant in Lp (v), 

p #  2). Thus the space U = [u'h,(r ,h)EA] is isometric to lp. Also, by (15), 

and so we have 

1 - e  ~ ( 1 - e P )  '/" <[ luLl[~/x < 1 + 3  <1  +e ,  

(23) 
(r,  A (r, a (r, A 

for all finitely non-zero sets of coefficients (a;,). 

We now claim that 

and 

9 ~ 

8 ~ For all x E X, we have 

d(x, u ) ~  2~(5n(2E))ll x II, 

For all u E U, we have 

d(u, X) <-_ 2n(2~)11 u II. 

Once 8 ~ and 9 ~ are proved, we can estimate d(X,  U) as follows: Let P be a 

norm 1 projection of lp onto U. Choose any 

a >2r/(5rt(2e))  and 1>/3  >2r t (2e) .  

(Note that by (4), 2rt(2~ ) < 1.) 

For each x E X there is u E U with II u - x II--< ,~ II x II, and so 

I I ( z  - e ) x  II = I I ( t  - e ) ( x  - u ) l l  ~ 2 ~  IIx II. 

Thus I I ( t -  e),x II ~ 24 and hence by Neuman's series, Pl• is invertible and 

11 (P,,,)-' It-<- 1/(1 - 2a ). 
On the other hand P X C _ U  and for any u E U  there is x E X  with 

II u - x 11--</3 II u II. Thus  d ( u ,  P X )  <= II u - Px  II = II P ( u  - x)ll ~ / 3  II u II. Since/3 < 1 
and u is an arbitrary element of U, a well known consequence of the 

Hahn-Banach separation theorem implies that P X  is actually the whole space U. 

Thus, 

1 
d(X ,  t,) = d(X ,  U) <= II P,,, II II (PJ,,)-' II ~ 1 - 2a"  
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Taking the infimum over all a > 2rl(5rl(2e)) we obtain therefore that 

d(X, lp)<= {1 -2r / (5r l  (2e))}-1 < K, 

which completes the proof of the theorem. 

To prove the claim 8 ~ it is enough to consider x in I.J,X.~,~, so we take r = 1 
and choose any 

X = a~))(XiXT('). 
i - I  

We shall define a block basis (v.j<=d(n(r))) of (u ' , , (r ,h)~A) and use it to 
estimate d(x. U). 

For each j ~ D', there is a (unique) q < r and i ~ Dq with j E C? ~q~ = C~ ~q~'"C'~. 
We set vj = u~, and obtain, by (14) and (22), 

I II xT"'- o, II--< II xT"'- z7 ,q,,o,r,II + II zT'"'""'- uTII 
(24) { - - - e + e  = 2 e  for a l l j ~ D ' . .  

For each j E D. we find by 2 ~ coefficients (/3~. h E C~ c'~) so that 

hE('~(r) 

For each index h in the above sum, we have 

(26) { IIx~"+'l-uZll<--IlxZ"+"-zZ"'""*"ll+[l~z"'""+"-"'~ll 
<= 2e by (14) and (22). 

By (10) and (23) both (x?, ~'+', h ~ C/'~) and (u;,. h E C~ "'~) are close enough to 
the usual lp-basis of the proper dimension so by Lemma 3 we get from (26) that 

[I o' I( ) ~,,x, ~ r _<-r/(2e) I/3~.l, ''p 

--</~rl(2e) I ~ /3~x~."*"l[--<4rl(2e)- 
h~cTm 

This together with (25) gives 

(27) II xT"'- o, I1_- < ~ + 4,7(2e)_--- 5r~(2e) 

where we set 

vj ~, J" = [3~u~, j ~ D , .  
h~CTt') 
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For each such j, 

IIv,]J~(l+e)( 2 1[3~1~) '̀ p 
\ h~CT(') 

=<(I+E)~ ~, t3~x~""> t 
h~_CT(') 

=< (1 + e)/x(/z + e) 

(1 + e)2(1 +2e)_-< (1 + 5 e )  

Similarly 11 vj II--> (1 - 5e), and so 

(28) 

by (23) 

by (10) 

by (25) 

by (7) and (5). 

=(1 + 5 e )  [yj for all (yj). 

Since 77 (2e)_-> 2e > # - 1, we can apply Lemma 3 to the sequences (vj), (x7 "~) 

with e replaced by 5~(2e),  and get by (10), (24), (27), (28) and by the definition 

of x that 

el(x, U)<= Z, ajx?"'- ,~ ajvj 
j= l  

=< rt(5rl(2e ]aj [~ 

~n(5n(2e))llx II, 

which concludes the proof of claim 8 ~ . 
The proof of claim 9 ~ is similar but somewhat simpler. It is of course enough to 

consider only elements of the form 

(29) u = ~ a~u~. 
(q,h)E~ 

q~r 

[ ] f "n  (q),n (s) Choose s > r, and note that for each q =< r and h E ---j~D~ ,--j 

I1 x z " ' -  uzll <--II xz" ' -  z z""""'ll + l[ zz 'q''"'''- uzl[ 

-_< 2e by (14) and (22). 

This, together with (10), (23) and (29), gives by Lemma 3 that 
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u -  o, ozx , , ,  
q = l  jEDq 

_--- n(2E) [a~l p 
(q, A 

q--~r 

<=(l-E) 'n(2~)lrull<-_2n(2~)llull, by (23) and (5), 

which proves claim 9 ~ , and completes the proof of the theorem. 

REMARK. In the case p = 1 one can simplify the proof and obtain an explicit 

basis for X, namely take as basis the sequence 

(x=~r'"; hE [..J CT'r"~r+",r>=l). 
jED, 

The fact that this sequence is equivalent to the usual/t-basis can be seen either 

by considering it as a perturbation of the corresponding family (u 7,) or directly by 

shifting each finite combination to a far enough level in the array (x7,~'~). 
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