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ON GOOD ¥, SUBSPACES OF |,

BY
LEONARD E. DOR

ABSTRACT
THEOREM. Given K >1 and 1=p <, there is A >1 so that every %,,
subspace of [, is K-isomorphic to I,

0. Introduction and preliminaries

Let us recall that a separable Banach space X is called a %, space if there is a
sequence X, C X, C X;C - - - of finite dimensional subspaces with UiX =X
and a constant g <% so that

d(X, [{)=pu, n=12,--

where d(n) denotes the dimension of X,. More precisely we say that X is a %,
space if the infimum of such w’s is no larger than A. We refer to %, spaces with
small value of A as ‘“‘good &, spaces”.

In his dissertation [10] M. Zippin proved that a space X with u =1 is
isometric to L, (v) for a suitable measure v (see also [6]). J. Lindenstrauss and A.
Petczyniski [7] proved that the same conclusion holds for X a %, space. In view
of precedents in functional analysis (see for example [2], [3], [4], [9], [11] and
[12]), it is natural to ask whether this result extends by continuity to values of A
close to 1, i.e.

PrOBLEM A. Is there a A, >1 and a function ¢, from (1,A,) to (1,*) with

lim,_ ... ¢,(A) =1 so that every £,, space is ¢,(A)-isomorphic to some L,(v)
space?

A partial answer to this problem was given by M. Zippin [11} in the case p = 1.
He gave a function ¢,(A) for 1 <A <A, so that every .%,, space which embeds
isometrically in /; is ¢,(A }-isomorphic to I,. However he had lim, _.,, ¢,(1) = 2.

In this paper we extend Zippin’s result to all values of 1=p < and give
lim s (X)) = 1.
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Zippin’s construction [11] plays a central role in our proof. It is presented here
in a streamlined and modified form.
We shall need two known results on sequences in L,(») spaces.

ProrosiTioN 1 ([4],[1], see also [5]). Let 1 =p <o, p#2. Thereis A, > 1 and
function 8,(A) from (1,A,) to (0,1) with lim,.,.8,(A)=0 so that for any
1 <A <A, any (finite or infinite) sequence (x, x2,* - -) in any L,(v)-space, if the
inequalities

(et <] e er(zrer)”

hold for all choices of scalars (a,, a,---) (with finitely many non-zeros), then
there are disjoint v-measurable sets Ay, A,, - -+ such that

lxi  M<8,A), foralli

Proor. The proof of proposition 2.1 of [4], modified slightly to account for
the fact that the x; are no longer assumed to be unit vectors, gives

g /\ —(p+2)/lp-2l (2 ] a lp) p

for all finitely non-zero choices of coefficients (a;). Then the proof of proposition
2.2 of [4] provides us with functions ¢; in L.(v) with ¢; =0, =;¢; = 1 a.e. so that

max | a:x; |
t

f [ x; [Ppidy = A7Pe 220 il |,

Now if we take A; =[¢; > 1], we will clearly have disjoint sets A,, and a simple
computation will give

| =2 - a2 50

for all i.

ProrosiTioN 2 (G. Schechtman [9]). Given 1 =p <, p#2 there is €, and
function a, : (0,¢,)~ (0,1) so that a,(¢)—>0 as e >0+ and forall 0< ¢ <&, if
(x)C L,(v) and (A:) is a sequence of disjoint v-measurable sets such that

) (1_6)(2101,- |p)”p§ Za.—x,- §(1+£)(Z[a,- [")Up

for all finitely non-zero (a.)'s, and

(ii) Il x Xipa, I<e foralli,
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then

n Za‘x".~n, = ap(e)(ZM.- Ip)up

for all finitely non-zero sequences of scalars (a,).

We shall need the following perturbation lemma which is a simple conse-
quence of Proposition 2:

LEMMA 3. Let 1=p <o, p#2, assume that ¢ is small enough and let (x,),
(y:) be two sequences in L,(v) such that

|xi—yll<e  foreachi,

and such that for all finitely non-zero sequences of scalars (a;),

=) (Zlak)”s| San

§(1+s)(2|ail’)'/p,

(l—e)(2i|a,- |")”p§“2wy:

‘é(l-#e)(Zla,— [”)”p.

Then for all such sequences (),

|Sati-wf=a-(Slar)”

where m =mn,(e)=2a,(5,((1—€)"')+28,(1—€)")+3¢e, so in particular
n(e)—0ase—0+.

ProOF. By Proposition 1 there are disjoint sets (A;) and disjoint sets (B;), all
v-measurable, so that

fx, =8  alli
ly,ol=8  alli
where 8§ =8, ((1—¢)™"). From our assumption we get that for all i,
lxi sl =l yisll+lx—yll=8+e,
and similarly
lyqal=8+e.

Thus for all finitely non-zero sequences (a;) of scalars,
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| et nlel 3o

| Zar.

+ ” 2 a"x"'A, - a"yi'u‘

=2a,(5) (2 e ,,,) L " Z axsn
i DU S DR

20,0)(Slak) "+ (S hax... )

by Proposition 2

1/p

/p Itp
+ <2 | iy iea, ||"> + (2 | ot (x: — y.-)ll") by disjointness

1/p

§{2a,,(8)+2(8+8)+€}(z | l")

In the case p =1 this is a special case of a trivial and well known perturbation
lemma for equivalents of the usual /, basis. For 1 <p <o, p#2, it can be shown
that the requirements that both sequences be well equivalent to the usual I, -basis
and that the ambient space be an L,-space cannot be dropped.

We use standard Banach space-theoretic notation as can be found in [8], for
example. For a function f and set A, fi is the function that equals f on A and
equals 0 off A. For an infinite set M, P.(M) will denote the family of all the
infinite subsets of M.

1. Proof of the theorem stated in the abstract

We fix 1=p <o, p#2. To simplify notation we choose a version of the
moduli mentioned in the introduction so that

¢} d(A)=8A)=Ar -1, all1 = A <A,
) a(e)=a,(e)=¢, all0<e <eg,
3) n(e)=1n,(e)Z ¢, all0<e <eg,

We choose £ >0 such that

) {1-2n(GnC2e)} <K,

as well as

©) (1+¢P <3/2 and & <1/10.
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Next we choose & >0 such that

6) 8=a(8)<e’/10

and finally find p > 1 such that

™) S(u)=6 (sop <1+38).

We shall show that any A < g will satisfy the statement of the theorem.
Fix a %,, subspace X of [. Since A <u, there are finite-dimensional
subspaces

such that
) UX,=X and d(X,. l:")=u, foralln.
n=1

For each X, we can find a basis (x, x3, -, xjx)) such that

d(n) 1/p d{n) dn) i/p
(10) M_l(2|01|p> = Saix;‘ é#(i'“ilp)

j=1 j=1 j=1

for all choices of scalars (e, j = d(n)).
For each n we choose by Proposition 1 disjoint subsets A} A? -+, Ajn.)of N
so that

(11) I arll<8(u)=8  forallj=d(n).

We may and shall assume that all the sets A} are finite. It might be helpful to
keep in mind a picture of the double array (x},n €N, j = d(n)) with the row
(x3,x3, -+, x%m) as its n’th level.

With each vector x} on the n’th level we associate a set of indices on the k’th
level (k > n) as foliows:

Cp*={h = d(k); | xkupnatll > (1 — 7)),
(12) for 1=j=d(n), n <k.
Also for all n <k and j=d(n) we set
13) ZR*=Xharaar  forallh € CH™
We now claim that

1°.  For any n <Kk, the sets Ct%,...,Czt, are disjoint. (This shows that the
definition in (13) is a proper one.)
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2°. Foranyn<kandj=d(n),
dx; [xi, h€CHD<e.

3°. Forany n <k and j = d(n), the supports of the functions (z7*,h € C')
are disjoint and contained in A7,

4°. For all n <k and h € Uy Cr*,
(14) [xk—zi*|=e and
(15) p |z zd-en)".

ProOOF OF THE CLAIM. 1° holds since any h EC**N Ci* for 1=i#j=d(n)
would have to satisfy by (10) and (12) the inequality

u? z[[xilP z ] x il +lxhll 2201 - €7)

which is absurd by (5), (6) and (7).

3° and 4° are obvious from the definitions (12) and (13).

To prove 2°, choose n <k and j =d(n). Since X, CX,, we can find scalars
B, Bz, *, Baw) so that

(16) x;= :Sf:ﬂ,‘x b
We introduce the auxiliary functions
yh=xku, 1=h=d(k)
For any h& C}* we have by (12)
ef = ”xﬁl—m,"m:)""
=lxhapaatlP +lxh_l

P+8° by (11).

§")’ﬁ|~,‘;-

This gives

\/p d(k) 1p
8.F) " = (2 18-
d(k)

2 Bhyﬁ|~,s;‘
h=1

d(k)
slerad+| S - yhy

(ep — 6P)UP<

hECT*

by disjointness

by (16)
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dik) Iip
=86+ <;.2_| | B. [") a(8) by (11) and Proposition 2

=8 +ua(d)|x;

=6+ u’a(d) by (10).

This, together with (10) and (16), gives

d(xj,{xi,h€CH= Bux

hECTk

p( 2 18.r) se2C

g

A

<2a(d

== 2" 10a(8)e <e by (2), (6) and (7),

which concludes the proof of the claim.

Our next step is to pass to a subsequence n(1) < n(2)<- - of the set of levels,
on which the sets C;* and the functions z ;* will behave in a mutually compatible
way, namely, if we set

(17) D, ={1,2,---,d(n(1))}

and, for each r > 1, set

D =U {Cren s <r,j € Dy}, and

(18)
D' = {1’27 o 'a d(n(r))}\D:’

then the following properties will hold:
5°. Foranyrz=1andanyj € D, thesets C}'"""®, s =r+1,r+2,-- have all
the same number of elements.

6°. Foranyrzl, any jED, and any s, s'>r, to any h € C;"" there
corresponds h' € C}'"¢) such that

[[ 250 = 20 <,

To get this, we define by induction a sequence n(1)<n(2)<--- of positive
integers, a sequence K, D K, D+ in P«(N), and the sets D, D, - - - as specified
by (17) and (18) so that

(i) n(r)=(minK,)Z K., all r €N,

(ii) for each r €N and each j € D,, the sets C'"*, k € K,,, have all the same
number of elements,
and
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(iii) for all rEN, jED, and k, k' €K, .., for each h € C!"* there is
h'€ C}™* so that

[ 5% =z < e.
The conditions (i)-(iii) clearly imply that 5° and 6° are satisfied.

We start the inductive construction with K,=N, n(l)=1, and D, =
{1,2,-+-,d(n(1))}. For the inductive step we take s >1 and assume that

n(l)<n@2)<---<n(s) and K,DK,D---DK,

have been defined so that the conditions (i}-(iii) hold for all 1 =r =s — 1 (under
the conventions (17) and (18)), and moreover, n(s)=minK,. Let K;=
K \{n(s)}.

Fix for a while j € D.. For each k > n(s) the functions (z;***, h € C}***) are
non-zero, with disjoint supports all contained in the fixed finite set A}’ (see 3°,
4°), Consequently, we have

|Creo*|=|AF®|  forall k > n(s).
Since we have such a bound, independent of k, for each j € D,, we can find
K"€P.(K}) and integers ¢; = A}*), j € D, so that
| Cr*| = ¢, alkeK;, jeD.
Now for each j € D, and k € K, the ¢;-tuple (z;*, h € C;*’*) belongs to
the compact set {u Ball (,,(A}*))}. (For definiteness we consider the indices

h € C}***in their natural order.) Therefore we can find K., € P-(K;) so that for
each j € D, for all k, k'€ K,.,, and each h € C;“* we have

23— zp <

where h' is the index corresponding to h under the natural orderings of C;*
and of C7®*.

Finally we set n(s + 1) = min K., and now the induction hypothesis holds with
s replaced by s +1, so the inductive construction is complete.

As a consequence of 6° we obtain the following property:

7°. For any q <r <s and for any i € D, and j € D, we have
Cr@nen Crone) =g,

To see this, assume that h € Cr@"© N C;*®. Then by 6° there is h'€E
Cr " so that

(19) ”Z:(q).n(s)_ z:,(q).nu)

[=e.
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Now we have two indices h' and j on the n(r)’th level. Since h’ € D; and

j €D, we have h'#j, and so

20) 20,0 = 0,

Consequently,

x5 gl = [ x5 = zzn

by (20)

= ”x;ll(Si — Z:(Q)JI(S)” + ” Z;“(q)-ﬂ(s) — z:gq)-ﬂ(')

=e+e=2¢ by (14) and (19).
But h € C;‘(r),nls)’ SO by definition (12)’
2e = ” x;(s)lAr;i"” =(1—¢eP)",

which contradicts (5) and thus proves the validity of 7°.

In view of 5°, 6° and 7° we may (and shall) assume, without loss of generality,
that

5%°. ForallrEN,jED, and s, s'>r,
n(r)n(s) — n(r)n(s’) — n(r)
Crne@ = Crowne) = Cre),
6°°. Forallralls, s'>rand all h € U;cp CI, we have
” Z;(r),n(S)_ Zﬁ(')'"(s')” <eg.

This can be done by permuting the elements in each consecutive row, and
adjusting all the definitions (of C}*, etc.) according to the new ordering.
Finally, using again the precompactness of the set (z;*"“), s > r) for each r,
and each h € U,cp, C, together with a diagonal process, we can find a
subsequence s;<s,<--- so that for any r and any h € U,c,, C7, the limit

@n uy =lim z ;e

st
exists in norm. This definition and 6° give us

“ z ;:(r).n(S) —u;

|=e¢

(22)
forallralls>randh € U C;©

JED,

We introduce the index set

A={(r,h); reNhe U C,’-‘"’},

Jj€D,
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and consider the family {u}, (r,h) € A}. For any given s >1, the functions
(za"), (r,h) €E A, r <s) are disjointly supported (on the sets A "), so passing
to limit on s, — > we obtain that the family (u}, (r, h) € A) is disjointly supported
(in view of the fact that disjointness on support is an isometric invariant in L,(v),
p#2). Thus the space U =[u;, (r,h) € A] is isometric to I,. Also, by (15),

l—e=(1—-¢")"=|usl

=u=s1+6<1+g

and so we have

Z LUk

(rnh)EA

s+e)( 3 Jaik)”

(rh)EA
for all finitely non-zero sets of coefficients (a}).
We now claim that

8°. For all x € X, we have
d(x, U)=27(5nQ¢e))| x|,

and
9°. For all u € U, we have

du,X)=2nQe)||u|.

Once 8° and 9° are proved, we can estimate d(X, U) as follows: Let P be a
norm 1 projection of I, onto U. Choose any

a>2n(51nRe)) and 1>B>27(2¢).

(Note that by (4), 21 (2¢)< 1.)
For each x € X there is u € U with |u —x||=a | x|, and so

17 = P)x || = (I = P)(x —u)]|=2a || x].

Thus ||(I — P)x ||=2a and hence by Neuman’s series, Px is invertible and
[(Px)"'|=1/(1 - 2a).

On the other hand PX C U and for any u €U there is x € X with
lu—x||=Bllul. Thus d(u, PX)=||lu —Px|=||P(u—x)||=B | u].Since B <1
and u is an arbitrary element of U, a well known consequence of the
Hahn-Banach separation theorem implies that PX is actually the whole space U.

Thus,

d(X,b)=d(X, US| Pl | (Po) =10
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Taking the infimum over all @ >27%(51(2¢)) we obtain therefore that
d(X,L)={1-2n(57nQe))} " <K,
which completes the proof of the theorem.
To prove the claim 8° it is enough to consider x in U, X, so we take r = 1

and choose any

dnr)

x = % ax;".
j=1

We shall define a block basis (v, j = d(n(r))) of (u}, (r,h)€ A) and use it to
estimate d(x, U).

For each j € D, there is a (unique) ¢ <r and i € D, with j € C}9 = Cr@=e),
We set v; = u}, and obtain, by (14) and (22),

{ B o P

Eete=2¢ for all j € D..

|+ 277 — uj|
(24)

For each j € D, we find by 2° coefficients (8%, h € C;*) so that

(25)

=e.

i 1
x;l(r)_ Z ﬁ’;‘xﬁ‘” )

heCT®)

For each index h in the above sum, we have

(26) { "x:(r-H) _ u;‘" = ||x=(r+l) _ z:(r).n(y+l)!| + " Za(r),n(r-o-l)_ u;l

=2¢ by (14) and (22).

By (10) and (23) both (x3“*", h € C;"’) and (u}, h € C}”) are close enough to
the usual I, -basis of the proper dimension so by Lemma 3 we get from (26) that

S piet- 3 pafsmee( S 1eir)”

hech®) hect hect)
=pnQe)| 2 Bixi"[=4n(2e).
heCy®
This together with (25) gives
27 Ix;”—v = e +49Q2e)=57Q¢)

where we set

vf = 2 g‘u;’g jE D"

hect®
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For each such j,

lol=a+e)( S 1ik)” by @
s(1+e)u| D Bk by (10)
=(1+e)u(nte) by (25)

=(1+ef(1+2e)=(1+5¢) by (7) and (5).

Similarly || v; || = (1 —-5¢), and so

a-s50)("% 1mPk)" =

= +58)<d]2'”[yi IP)”P for all (y,).

2 Y

j=1

(28)

Since n(2e)=2¢ > p — 1, we can apply Lemma 3 to the sequences (v;), (x7)
with ¢ replaced by 51(2¢), and get by (10), (24), (27), (28) and by the definition
of x that

d@n(r) d@()
) ax; " — ‘2 a;v;

j=t j=1

=nenee) ('S la k)

i=t

dix,U)=

= un(Gn2e))l x|,

which concludes the proof of claim §°.
The proof of claim 9° is similar but somewhat simpler. It is of course enough to
consider only elements of the form

(29) u= 2 atul.
(g.h)ea
sr

Choose s >r, and note that for each ¢ =r and h € U,cp, C;@",
x5 = ugff =l x5 = 2z@ | 4[| 239 — uil|
<2: by (14) and (22).
This, together with (10), (23) and (29), gives by Lemma 3 that
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r.

n(s)
u— _S_ 2, aixh
q=1 jED, heCT@Ine)

gn(zs)((q_h})ja ]aﬁl")”p

qEr

=(1-¢e) 'n@e)|ull=2n@2e)|ul, by (23) and (5),

which proves claim 9°, and completes the proof of the theorem.

REMARK. In the case p =1 one can simplify the proof and obtain an explicit
basis for X, namely take as basis the sequence

(x:"”’; he U cpome r = 1).

JED,

The fact that this sequence is equivalent to the usual /,-basis can be seen either
by considering it as a perturbation of the corresponding family (u}) or directly by
shifting each finite combination to a far enough level in the array (x;*).
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